If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-19x-40=0
a = 4.9; b = -19; c = -40;
Δ = b2-4ac
Δ = -192-4·4.9·(-40)
Δ = 1145
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{1145}}{2*4.9}=\frac{19-\sqrt{1145}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{1145}}{2*4.9}=\frac{19+\sqrt{1145}}{9.8} $
| 1/3x-2=1/6x-2 | | -10=3+b/2 | | x-8=2;x=6 | | 2x+10=-2(x+10) | | 3(2m-3)=5(m+1 | | 15=5+1/3w | | 29(c-59)=27550 | | 189=n2 | | 6x+-4+8x+-12=180 | | 6(−x^2−4x+3)=√(36^(2x+12)) | | 3x+4×-2(14+12×)=36 | | 6x+-4-8x+-12=180 | | -6s=-9s–6 | | 4x+9x-3x=30 | | X=yX+2y=20 | | 5/x+9=14 | | 3x^2=9−6x | | 4+6x(4x-6)=92 | | 23x-8765=87 | | -1=5+x÷6 | | (5x+1)^2=9 | | (x-8)^2=36 | | 43=12x-3x^2 | | x+6x-7/9-7=4x+5/3 | | 10p+9+-11-p=-2(2p+4)-3(2p-2) | | 361=j2 | | 3x2=9−6x | | 3+x/3+x+7/2=4x+1 | | 4/5r=1/6 | | −24−18p=38p−24−18p=38pp | | 0.4p-4=3.6 | | -8)a/8-2)=26 |